

lcop

Zero-Emission Transition Study

January 22, 2025 - DRAFT

connect public transit

CONNECT Public Transit

- Introduction
- Zero Emission Bus Market Overview
- Case Studies and Interviews With Peer Agencies

loop

- Key Points From Peer Review
- Implementation Planning
- Conclusion and Recommendations

Introduction

Considerations in deciding to pursue a zero-emission fleet transition

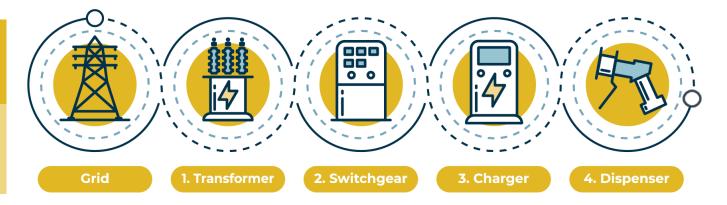
- Compiled industry best practices and market trends
- Interviewed peer agencies

Data to support Connect in making informed decisions

- Real-world operating performance
- Transition costs
- Operational impacts
- Workforce development
- Best practices and lessons learned

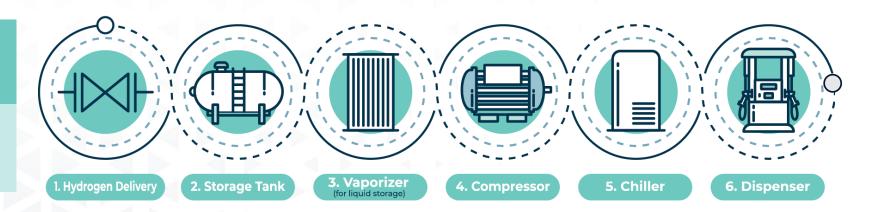
Understanding why agencies are making the move to zero-emission buses

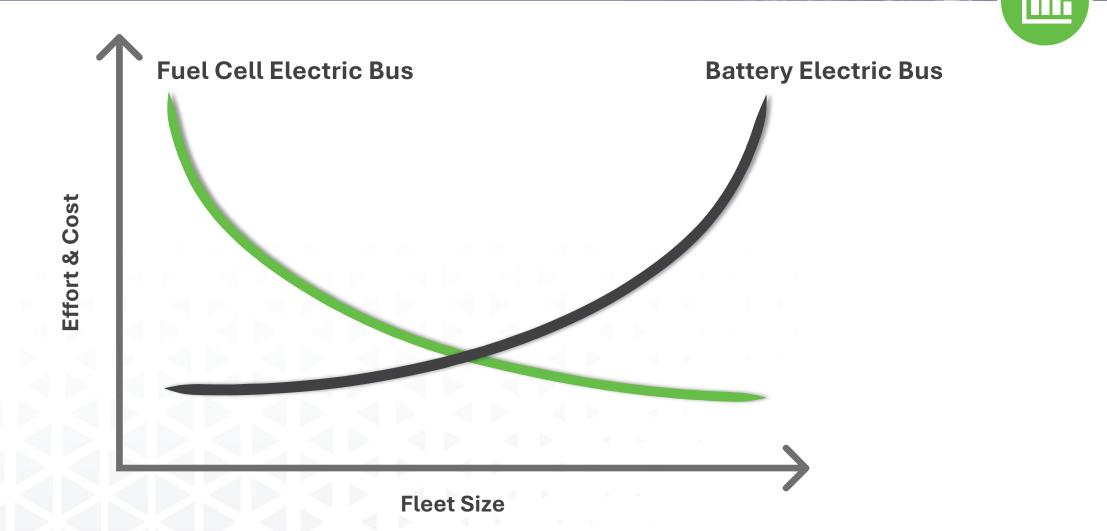
- State, regional, and local mandates
- Availability of Federal Funding
- Air quality improvement goals


Market Overview

Zero Emission Vehicle Technologies

Battery Electric Bus (BEB)


Range: 150 – 250 miles Charge stored in an onboard battery pack


Fuel Cell Electric Bus (FCEB)

Range: 350+ miles

Charged during vehicle operations using on-board stored hydrogen fuel

Scaling Fueling/Charging Infrastructure

Vehicle Technologies

	BEB	FCEB	Diesel Hybrid	Diesel
Vehicle Range (per OEM)	150 – 250 miles	350 miles	500 miles	450 Miles
Fueling/Charging Time*	~5 – 8 hours	~20 minutes	~20 minutes	~20 minutes
Vehicle Purchase Price	\$850,000 - \$1,000,000 +	\$1,000,000 +	\$700,000 - \$830,000	\$550,000
Infrastructure Cost	\$69,000 per depot charger/bus**	\$4.7 million for 50 buses***	Uses existing infrastructure	Uses existing infrastructure
Operations and Maintenance Cost	lower	higher	moderate	moderate

*Assuming depot slow-charging of BEB, highly variable based on charger power and battery size

Does not include other costs associated with addition of chargers, including potential transformer, substation, and conduit upgrades *Based on OCTA's 18,000-gallon liquid storage Hydrogen station, built in 2019

Peer Interviews

Peer Agencies

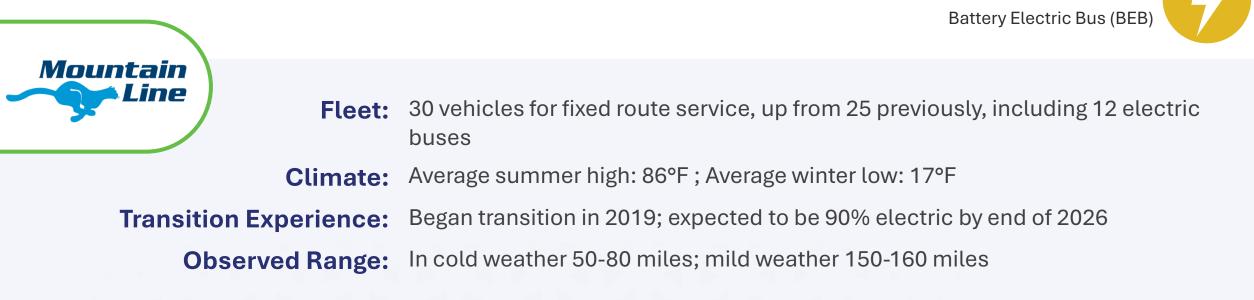
Identified four agencies with:

- Similar climate considerations
- Similar Fleet Size
- Diverse ZEV technologies
- Various stages of transition

Connect Transit

Logan, Utah

Fleet: 29 vehicles for fixed route service, eight paratransit vehicles; three microtransit vehicles


Climate: Average summer high: 88°F; Average winter low: 11°F

Service Characteristics:

Longest route is 335 miles; average weekday route is 197 miles (excluding special event service)

Mountain Line

Missoula, Montana

Key Challenges and Solutions

- Range anxiety for electric buses is addressed by adjusting the operational duty of each bus to match what it is capable of driving in a day, ultimately increasing the total number of vehicles in the fleet
- Have staff data analyst to decipher vehicle data

Mass Transit District

Champaign-Urbana, Illinois

Fuel Cell Electric Bus (FCEB)

Fleet: 12 fuel cell electric buses; 106 diesel-electric

Climate: Average summer high: 84°F; Average winter low: 16°F

Transition Experience: Began operating FCEBs in 2021; MTD produces Hydrogen Fuel on-site with solar-powered electrolyzer

Observed Range: Est. 300 miles from 40' FCEB; 200 miles from 60' FCEB

Key Best Practice:

• Train a core group of technicians who can work on the new technologies and ensure they get regular time spent working on these vehicles.

High Valley Transit

Wasatch Back, Utah

Battery Electric Bus (BEB)

High Valley

Fleet: 32 buses, including eight Gillig electric buses

Climate: Average summer high: 83°F; Average winter low: 9°F

Transition Experience: First deployed electric buses in 2023. Fleet is currently 25% electric.

Observed Range:

e: 80 to 120 miles for current buses. New buses with larger battery are expected to have range around 200 miles.

Best practices and recommendations:

• Explore the potential to deliver additional charge to the bus throughout the day by opportunity charging at layover locations.

Mountain Line

Flagstaff, Arizona

Battery Electric Bus (BEB)

Fleet:30 fixed-route vehicles, including two electric busesClimate:Average summer high: 81°F ; Average winter low: 10°FTransition Experience:Hybrid fleet since 2017, electric buses added in 2023Observed Range:100 miles predictably, 190 miles under best circumstances

Best practices and recommendations:

• Eliminate on-route shift changes—each operator pulls out a new bus.

Summary

Peer Agencies Identified	connect public transit	Mountain Line	thrive	High Valley TRANSIT	MOUNTAIN LINE
Number of Fixed-Route Buses	29	30	118	32	30
Percent of Fleet Zero- Emission	-	43%	11%	25%	6%
Technology	Diesel	BEB	FCEB	BEB	BEB

Takeaways

- BEBs have limited ranges that would likely require operational changes.
- A ZEB Transition is expensive - vehicles are roughly double the price of diesel buses.
- FCEBs have longer ranges, but the infrastructure cost is likely prohibitive at Connect's fleet size.

Challenges

- High initial capital costs to update or upgrade facilities.
- Difficulties finding skilled labor to maintain the chargers.
- BEBs have constrained ranges, often requiring fleet expansions or route and service adjustments.
- Additional safety considerations with an FCEB deployment, especially regarding fuel production, delivery, and storage.

Key Points From Peer Review

Key Points From Peer Review

Better fuel efficiency

Quieter buses

Highly variable vehicle range

Increased vehicle purchase price

Operational adjustments likely required

Facility conversion capacity constraints

Implementation Planning

Implementation Planning

• • •

Phased Approach

Short-term

Planning, initial pilot projects, and infrastructure setup.

Medium-term

Expansion of zero-emission vehicles and infrastructure.

• Long-term Full transition and optimization.

Stakeholder Engagement

• **Engage early and often** with utility, policymakers, operations staff

Risk Management

• Identify and mitigate potential risks early in the process

Implementation Planning

Transition Strategy

Fleet Plan

Demonstrate a long-term fleet management plan with a capital spending strategy

Facility Plan

Evaluate existing and future facilities and their relationship to the technology transition

Summary and Recommendations

Key Takeaways

Market Overview Considerations

- Fuel availability
- Range feasibility for Connect's operations

Peer Agency Interviews

- Use a charge management system to manage and standardize data between manufacturers
- Consider re-bocking routes to account for range limitations
- Operational changes are likely necessary, with each driver shift change requiring a bus swap for a fully-charged bus
- Plan for the long-term necessary infrastructure investments and facility upgrades

Recommendations

Perform detailed route analysis to assess feasibility of transition

Examine fleet decommissioning schedule to dial in on potential transition phasing

Questions?

